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Abstract: Remote-sensing observations are needed to estimate the regional and global impacts of
snow. However, to retrieve accurate estimates of snow mass and rate, these observations require
augmentation through additional information and assumptions about hydrometeor properties.
The Precipitation Imaging Package (PIP) provides information about precipitation characteristics
and can be utilized to improve estimates of snowfall rate and accumulation. Here, the goal is
to demonstrate the quality and utility of two higher-order PIP-derived products: liquid water
equivalent snow rate and an approximation of volume-weighted density called equivalent density.
Accuracy of the PIP snow rate and equivalent density is obtained through intercomparison with
established retrieval methods and through evaluation with colocated ground-based observations.
The results confirm the ability of the PIP-derived products to quantify properties of snow rate and
equivalent density, and demonstrate that the PIP produces physically realistic snow characteristics.
When compared to the National Weather Service (NWS) snow field measurements of six-hourly
accumulation, the PIP-derived accumulations were biased only +2.48% higher. Additionally, this work
illustrates fundamentally different microphysical and bulk features of low and high snow-to-liquid
ratio events, through assessment of observed particle size distributions, retrieved mass coefficients,
and bulk properties. Importantly, this research establishes the role that PIP observations and
higher-order products can serve for constraining microphysical assumptions in ground-based and
spaceborne remotely sensed snowfall retrievals.

Keywords: precipitation; snowfall rate; snow mass retrieval; snow microphysics; video disdrometers

1. Introduction

Remote-sensing observations, principally radar, and passive microwave measurements,
provide essential information for estimating and forecasting the impacts of precipitation, and relevant

Atmosphere 2020, 11, 785; doi:10.3390/atmos11080785 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0002-8685-6242
https://orcid.org/0000-0003-2890-1217
https://orcid.org/0000-0001-8228-3910
https://orcid.org/0000-0003-1400-1007
https://orcid.org/0000-0002-5255-3040
https://orcid.org/0000-0002-6090-7144
http://dx.doi.org/10.3390/atmos11080785
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/11/8/785?type=check_update&version=2


Atmosphere 2020, 11, 785 2 of 26

observing platforms provide coverage both nationally and globally [1–3]. However, these observations
contain incomplete information about the precipitation, therefore assumptions about hydrometeor
properties are required in order to retrieve accurate estimates of mass and rate. This is especially
true for snow, as more complicated physical properties drive estimation uncertainties [4–6].
These uncertainties primarily result from variability in microphysical characteristics of the populations
of particles, i.e., particle size distributions (PSDs) [7,8]. Further uncertainties arise due to variations
in individual particle properties and how they are fundamentally related to the remote-sensing
detector response [9–12]. A video disdrometer instrument, such as the Precipitation Imaging
Package (PIP), provides information about hydrometer characteristics (e.g., PSDs, particle fall speed,
and higher-order-derived products, such as density and rate), and can be utilized to reduce uncertainty
and greatly improve estimates of snowfall rate and accumulation. For example, these in situ observations
can be applied to constrain microphysical snow particle modeling and through forward-modeling
address the challenges inherent to remote-sensing retrievals [13,14].

Investigations of PIP-derived products, coupled with colocated remote-sensing instrumentation
and surface meteorology measurements, are active areas of research. Specifically, Tiira et al. [15]
employed the PIP to examine connections between snow density and PSDs and fall velocities to better
constrain relationships of mass and particle dimensions. Additionally, studies have used observations
from the PIP (and its predecessor, the Snowflake Video Imager [16]) to produce mass-dimensional
relationships of snow particles to assess the quality of radar reflectivity-derived snowfall rate
relationships [13,17,18]. PIP-derived products of snow properties in conjunction with meteorological
measurements and reanalysis products have been used to illuminate microphysical characteristics
associated with specific types of snowfall events [19,20], and to generate parameterizations to improve
space-based retrievals of precipitating snow properties [8,21].

The ability of spaceborne remote-sensing instruments to detect surface snowfall events and
provide accurate snow rate retrievals is complicated by various factors, including inherent instrument
limitations, microphysical variability, environmental conditions, and surface type [22–24]. Seasonal
ground-based and spaceborne radar snow estimate comparisons are reasonable when averaged over
relatively large spatial domains [4]. However, other studies have indicated 30–40% spaceborne
radar overestimates compared to ground measurements, with results strongly geographically and
latitudinally dependent [9]. Additionally, the presence of orography adversely impacts both ground and
space-based radars, resulting in underestimation biases >70% [25,26]. In situ ground-based observations
of snowfall accumulation also suffer from relatively large uncertainties, as intercomparisons have
shown that gauges are biased low, with as much as 50% of the accumulation missed when unshielded
and 12–27% with a single perimeter fence [27–29].

In this work, we demonstrate the quality and utility of two higher-order PIP-derived products:
liquid water equivalent snow rate and an approximate measure of volume-weighted density called
equivalent density. These derived products demonstrate the ability of the PIP to obtain accurate
estimates of snow accumulation when compared to proven ground-based observation methods and
established retrievals of mass. The PIP snow rate and equivalent density retrievals are assessed through
intercomparison with established retrieval methods by von Lerber et al. [17] and Wood et al. [30] and
through evaluation with colocated ground-based observations. We achieve quality intercomparisons
of snow events by leveraging the unique and comprehensive dataset collected at the National Weather
Service Marquette, Michigan office [19]. The presented work separates snow events into categories of
low or high snow-to-liquid ratio (SLR) and will examine the differences using observations from the PIP
and bulk snow characteristics from the PIP higher-order-derived products and the von Lerber et al. [17]
and Wood et al. [30] retrievals. We will first describe the data used in this work, as well as the methods
employed to obtain estimates of mass and snow rates (Section 2). PIP-derived data products will also
be described, with a focus on the empirically derived equivalent density parameterization, as it has not
before been published (Section 2.2.1). Section 3 will outline and discuss intercomparison results for the
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low and high SLR snow events, starting with microphysical and mass characteristics, then focusing on
the snow rate and density results.

2. Data and Methods

2.1. Location and Instrumentation

This study utilizes an enhanced precipitation instrument suite located at the Marquette, Michigan
(MQT) National Weather Service (NWS) office [19]. This long-duration dataset consists of colocated
remotely sensed and in situ observations of precipitation from January 2014 through the present.
This region receives approximately 250 to 500 cm of measured snow accumulation per year, half of
which is produced by Lake-effect Snow (LeS) processes [19]. Because this area receives both synoptically
and surface-forced (e.g., LeS and orographic) snowfall, there is a wide range of observed snow event
environmental conditions and snow-to-liquid ratios (SLRs).

2.1.1. Precipitation Imaging Package

The Precipitation Imaging Package (PIP) is a NASA-developed video disdrometer, which evolved
from the Snowflake Video Imager (SVI) [16]. The PIP is inexpensive and easily deployable and plays a
major role in the NASA Global Precipitation Measurement (GPM) mission ground validation (GV)
campaigns [3]. The instrument consists of a high-speed video camera (380 frames per second) with a
charge-coupled device image sensor. This camera is aimed at a bright halogen lamp at 2 m distance,
with a focal plane at 1.3 m distance. The PIP has a field of view of 64 by 48 mm, an image resolution of
0.1 by 0.1 mm, and a depth of field dependent on the particle diameter. The PIP setup is unique in
that precipitation particles are relatively unimpeded by the instrument itself, as the design provides
an open volume between the camera and the lamp [16]. This is particularly important for accurately
observing and quantifying snowfall, as measurements from other widely used precipitation gauges,
i.e., Pluvio, Geonor, etc., will be adversely impacted by even moderate winds [27–31].

The PIP camera records videos of the hydrometeor shadows as they fall through the observation
volume in front of the light source. Image processing software then identifies each particle individually
and is able to discern associated characteristics from these observations (see Newman et al. [16]
for details). For example, the PIP records shape characteristics, such as the particle equivalent area
diameter, which is the diameter of a circle for which the area equals that of the particle projected
upon the plane of view. Additionally, for particles that are observed in more than one frame, both the
horizontal and vertical motion is measured. These observations are then used to create particle size
distributions (PSDs) and fall speed estimates at a one-minute resolution [16,19]. The images are
subsampled by a factor of 25 to prevent repeatedly counting the same particle when calculating the
PSD. The PIP camera images have an extremely low noise level, which enables a particle detection
threshold of 0.3 mm equivalent area diameter. The PIP software makes computations for all diameter
bins that contain at least one particle. Recent advancements in computer processing capabilities and
expanded software since the development of the SVI enable the PIP to produce higher-order-derived
data products, such as density and precipitation estimates and enable additional capabilities such
as phase-separated rain and snow rate estimates [8,14,19,31]. These high-order data products are
further described in Section 2.2.1. PIP-Derived Data Products. This work primarily focuses on the PIP
measurements (e.g., PSDs, fall speeds, particle dimensions) and high-order-derived products.

2.1.2. Snow Field Observations

The NWS MQT office maintains an adjacent open field that is used for snow accumulation
measurements. The seasonal snowpack depth is measured using a flat parcel of land 36 m2 with four
150 cm snow stakes evenly distributed. New accumulations of snow are obtained five times per day by
NWS MQT meteorologists at 0000, 0459 (one minute prior to local midnight), 0600, 1200, and 1800 UTC
during ongoing precipitation events. A plastic, white snow board is placed adjacent to the open field
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and cleared off between each measurement [32]. The liquid water equivalent (LWE) precipitation is
also collected and determined using a 20.32 cm diameter standard rain gauge. Snow from the gauge is
melted to obtain the LWE accumulation and calculate the snow-to-liquid ratios (SLRs) for the 6-hourly
periods (combining accumulation from the 0459 and 0600 UTC measurements). Observations from the
snow field will be compared to the PIP-derived products and the retrievals in this work.

2.1.3. Accumulation Gauge

An OTT Pluvio 200 weighing precipitation gauge is also adjacent to the snow field. The Pluvio
has an opening of a 16 cm diameter that is surrounded by a heated ring to prevent icing and snow
build up. The Pluvio gauge is encircled by an Alter-type windshield of diameter 106 cm containing
24 lamellas to mitigate the impacts of wind on particle collection, thus improving catching efficiency of
the gauge [31]. Accumulation observations are output at one-minute intervals with a resolution of
0.1 mm/min.

2.1.4. MicroRain Radar

The METEK Micro Rain Radar 2 (MRR) is a vertically profiling, 24-GHz frequency-modulated,
continuous-wave Doppler radar [33]. The MRR has been used in field campaigns for observations
of snow (i.e., [10,19,34–36]). The MRR at the NWS MQT site is configured to profile up to 3000 m
above ground level (AGL) with a vertical resolution of 100 m and 1 min temporal resolution. The MRR
dish contains a heater to keep the antenna free of snow and subsequent attenuation. However when
snowfall is particularly dense, and/or the ambient temperature is near 0 ◦C, and/or the snow rate is
very high, the melting from the heater can result in residual layers of water that attenuate the signal
and impede the data. It is important to be aware of the impact of the heater during warm, heavy,
and extremely dense snowfall events.

2.1.5. Surface Meteorological Observations

The surface meteorological data are obtained from the automated Davis Vantage Pro2 weather
station, which is mounted on a tower (10 m AGL) adjacent to the NWS MQT office and snow field.
Observations of surface temperature, dew point, and wind speed are recorded at one-minute intervals
(instrument details can be found in Pettersen et al. [19]). The surface meteorological data are used
to help choose the events used in this work, as low wind speed snow events will provide the best
conditions for comparisons.

2.2. Methods for Estimating Snow Properties

Three methods of estimating bulk snow properties will be compared in this work. All three
methods use the PSD and fall speed information from the PIP to produce an LWE snow rate (R):

R =
1
ρliq

∫
m(De) V(De) N(De) dDe (1)

where m(De) is the mass, V(De) is the fall speed, N(De) is the size distribution, and ρliq is the
density of water (note: all parameters discussed within this section are summarized in Table A1 in
Appendix A). As part of the higher-order products created by the PIP processing software, the PIP
method parameterizes particle density, herein referred to as equivalent density, to obtain the mass
(see Section 2.2.1). The other two methods, von Lerber et al. [17] and Wood et al. [30], outlined in
Sections 2.2.2 and 2.2.3, respectively, retrieve mass directly. The von Lerber and Wood retrievals
determine the parameters α and β of a power law, which describes particle mass as a function of the
area-equivalent diameter (De) of the particle:

m(De) = αDβe (2)
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Given the retrieved parameters and the PSD observed by the PIP, the results are then used to
calculate mass-weighted mean diameter (Dm) and bulk equivalent density, the equivalent density
averaged over the PSD. With information about particle fall speed as a function of size (observed
by the PIP and handled differently by the two retrievals as described below), snowfall rates and
corresponding accumulations can also be calculated.

2.2.1. PIP-Derived Data Products

As mentioned previously, the PIP provides higher-order data products estimating density and
LWE precipitation rates. These products are derived using PIP observations of particle sizes and
fall speeds in conjunction with an empirically determined parameterization of an equivalent density.
Equivalent density, hereafter ρe, is the ratio of the mass of a nonrain particle to its apparent volume
as determined from its area-equivalent diameter (De the diameter of a circle with the same area as
that projected by a particle in the observed plane of view). The concept is similar to the snow particle
bulk densities derived by Brandes et al. [37] and Huang et al. [38] from 2D Video Disdrometer (2DVD)
imagery. The ρe formulation is a data-guided parameterization that is determined by the De and
size-resolved fall speed V(De) values observed by the PIP and is constrained by empirically derived
physical limitations of ρe and V(De). The ρe parameterization includes assumptions about how density
varies with particle size (De), and a fall speed-based interpolation between limiting values for density.
The formulation can be written as:

ρe(De, V(De)) = ρliq −
ρliq − ρmin(De)

Vmax(De) −Vre f
(Vmax(De) −V(De)). (3)

The boundary condition of minimum density, ρmin(De), is derived based on previous work
suggesting power law relationships for particle density. For example, Huang et al. [38] analyzed fall
speeds of individual particles obtained from a 2DVD in Finland during light snowfall. They found that
averaged size-resolved density (ρsize) as a function of volume-equivalent diameter (DVe; as opposed to
the PIP use of area-equivalent diameter) was well represented by the following power law:

ρsize = 0.15D−0.86
Ve . (4)

The PIP ρe empirical parameterization boundary condition employs a similar power law model,
as this approach is consistent with the use of power laws for particle mass and particle volume. The ρe

parameterization therefore uses the relation:

ρmin(De) = cDx
e (5)

where De is observed by the PIP, the gain (c) is based on empirical observations from a snow event
(described below), and the exponent (x) is –0.86 following Huang et al. [38]. The boundary condition
of the maximum density is simply the density of water, ρliq (1 g cm−3).

The interpolation of density with fall speed of the ρe parameterization is derived from physically
based models for particle terminal velocity (e.g., Böhm [39]), which show, given a particular particle
volume and shape, the particle terminal velocity increases as mass increases. This is also consistent
with the particle density increasing, thus the PIP adopts a similar approach with which to extend
the ρe parameterization to higher-density (e.g., melting) precipitation events. If we assume for each
De that the observed fall speed is the terminal velocity, as the density increases the terminal velocity
increases up to the limiting case of the terminal velocities of raindrops. When precipitation falls as rain,
the fall speeds should approximate those determined by Atlas and Ulbrich [40] terminal velocity of
rain as a function of De. The Atlas and Ulbrich model is valid for raindrops up to 5 mm De. Therefore,
the maximum fall speed as a function of particle size, Vmax(De), is taken to be that of a raindrop of
the same size and is estimated from expressions for raindrop fall speed by Atlas and Ulbrich [40].
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The minimum boundary condition for the fall speed-based interpolation, Vref, is empirically derived
from PIP snow observations (detailed below).

The constants c, x, and Vref were determined empirically from high-quality reference cases of
snowfall event accumulations with data obtained from the PIP and snow field observations from the
NWS MQT during the 2014–2015 winter. These events had SLRs ranging from low (10:1) to high
(50:1) values, corresponding roughly to events with high and low snow particle densities, respectively.
The snow event chosen to constrain the low-density end of the ρe parameterization was a high SLR
event with a mean ratio of 50:1, which had uniform snowfall and occurred under ideal meteorological
conditions for accumulation accuracy (surface temperatures <−5 ◦C and wind speeds <5 m s−1) to
obtain estimates of ρmin(De). The event accumulation was determined using the following relationship:∑

event
(R∆t)i =

∑
event

[
π
6

∫
c D−0.86

e D3
e V(De) N(De)dDe ∆t]

i
, (6)

where
∑

event(R∆t)i is the total LWE accumulation summed over the duration of the event as determined
by the NWS MQT snow field observations and the summation on the right is over all the discrete
samples (i) observed by the PIP during the event. The right side of the equation is represented
by variables obtained by the colocated PIP observations (De, the size-resolved velocity distribution
V(De), and the number concentration, N(De)). The gain (c) was then adjusted so that the resulting
accumulation from the 50:1 SLR event matched that of the NWS MQT snow field (represented as∑

event(R∆t)i in Equation (6)). The PIP observations of particle fall speeds during this high SLR (50:1)
event also informed the minimum boundary condition for fall speed in the ρe parameterization,
resulting in the constant value for Vref. The resulting ρe parameterization was then tested and found
to reproduce accumulations for both the low (10:1) and high (50:1) SLR NWS MQT observations.
Additionally, the analyses in this work will further evaluate the performance of the ρe parameterization
more quantitatively.

The ρe parameterization therefore allows for discrete, time-resolved precipitation rates for snowfall
events, which are obtained from the PIP observations as:

R(t) =
π
6

∫
ρ
(
De, V(De), c, x, Vre f

)
D3

e V(De) N(De) dDe. (7)

We have omitted the time dependence on the right side of the equation for clarity, and show
explicitly the dependence of the ρe parameterization on the described constants, as well as on
observations of De and V(De). The three-dimensional shape of the surface of the ρe parameterization
as it relates to both De and fall speed is illustrated in Figure 1.
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The PIP method uses the ρe parameterization and observations of De and fall speeds (V(De)) to
create a data product of ρe (in g cm−3) resolved by particle size and time. Additionally, a one-minute
bulk equivalent density, hereafter ρe, is produced, which is the volume-weighted average of the ρe

distribution as shown in Equation (8):

ρe =
π
6

∫
ρe(De, V(De))D3

e N(De)dDe

π
6

∫
D3

e N(De)dDe
(8)

A single ρe value represents the equivalent density of all the snow that falls in the one-minute
period. The value of ρe is approximately related to SLR. The ratio of ρe to the density of water (ρliq) is
unitless, and since the value of ρliq is 1 g cm−3, the inverse of the ρe represents an SLR. Note that the
equivalence of the PIP ρe-derived SLR to the NWS-measured SLR depends on the PIP acquired volume
accumulation being consistent with the resulting volume of the snow as it lies on the ground [41]. It is
important to note that the ρe parameterization was developed and tested on only a few snow events
with SLRs ranging from 10:1 to 50:1 (the limiting case). The presented work examines a larger sample
size of snow events and includes a broader range of SLRs and will assess the ρe parameterization for
snow conditions outside of the initial training events. The snowfall events selected for comparison
in this work have a range of NWS SLRs from 7:1 (wet, dense snow) to 70:1 (ultralow density) and
therefore span ρe values of 0.14 to 0.014 g cm−3, respectively. These values are typical for precipitation
events at MQT that are classified as snow, but do not approach the expected ρe values for moderately
melted snow, as would be found in mixed-phase precipitation, and for rain, which is an area for
future study. In this work, we will compare the PIP-derived data products of the bulk density (ρe)
and LWE precipitation rate against results from two previously established snow mass retrievals:
von Lerber et al. [17] and Wood et al. [30] described in the following sections, as well as compared to
observations from the NWS MQT snow field 6-hourly accumulation measurement.

2.2.2. von Lerber Mass Retrieval

The mass retrieval process, described in more detail in von Lerber et al. [17], is based on the
hydrodynamic theory [39], in which, the gravitational force related to the particle mass is equalized with
the atmospheric drag influencing the falling particle. In this method, the mass is retrieved for a single
particle utilizing the observations of fall velocity, dimensions, and environmental variables, such as the
temperature, relative humidity (obtained from the ERA 5 reanalysis), and pressure. In the literature,
there exist several parameterizations to describe particle flow characteristics (i.e., the relation between
the Best and Reynolds numbers), and in the method used here four of these parameterizations are
computed: Böhm [39], Mitchell and Heymsfield [42], Khvorostyanov and Curry [43], Heymsfield and
Westbrook [44]. The parameterization that best represents the estimated snow accumulation is selected
for each individual snow event. The choice is based on scaling performed by comparing the estimated
total LWE accumulation of the mass retrieval process with a total observed accumulation for each
snowfall event. Whenever a significant difference between the estimated and observed accumulation
is seen, a simple correction factor, ranging from 1.0 to 1.42 is applied to the particle maximum diameter
(diameter of the circumscribing sphere) when calculating the Reynolds number. Typically, this factor
has a value of 1.0 and no correction is performed. The idea behind this correction factor is to balance
the error in the irregular-shaped particle dimensions introduced by the observation from a single
projection plane perpendicular to the fall direction [7,45]. In addition, this correction factor is also
seen implicitly to compensate truncation of the observed PSD [17]. Thus, the uncertainties of this
mass retrieval process are mostly related to observations of the dimensions (as they are performed
from the side and not from the fall direction), PSD truncation in observations, selection of the used
parameterization, and impacts from gauge undercatchment used for scaling. In this study, the scaling
is performed against the Pluvio gauge adjusted by the NWS MQT snow field observations.
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Prior to the scaling, between the estimated and observed LWE accumulation, the PIP obtained
one-minute PSDs are filtered. First, by applying a threshold in a total number concentration of
20 m−3; second, by removing the isolated observations of large particles (excluding outliers if four
smaller size bins are not containing any particles, i.e., Tiira et al. [15]); and third, by taking a 5 min
mean. The coefficients of m(De) in power-law are derived through a linear regression fit to the 5 min
retrieved masses in log-scale, requiring at least 30 observed particles, and outliers are filtered utilizing
Gaussian kernel density estimation (KDE; [46]) to find the most probable mass for each diameter bin,
and considering only mass observations within half-width at half maximum from the bin peak KDE
value [15]. The ρe is then determined every 5 min as a function of De with the coefficients of m(De) and
the averaged observed PSD.

2.2.3. Wood Mass Retrieval

To leverage the information provided by multiple sources of snowfall observation during intensive
precipitation ground validation experiments, Wood et al. [13,30] devised an optimal estimation method
to retrieve the parameters described above for snow particle mass (Equation (2)), as well as the
parameters of a power law describing horizontally projected area and a shape parameter relating the
observed particle maximum dimension to its likely true dimension. The retrieval uses measurements
of snow PSD, radar reflectivity, particle fall speeds, and precipitation rate along with an a priori
probability density function for the parameters to be retrieved. This combination of observations was
found to effectively constrain the mass parameters and provide less robust constraints on the area
and shape parameters [30]. Given the mass and projected areas, fall speeds are forward-modeled
using hydrodynamic balance [39] as implemented by Mitchell and Heymsfield [42]. The retrieved
shape parameter compensates for differences between the PIP-observed particle size and the actual
particle maximum dimensions [7]. As diagnostics, the retrieval fits the observed PSDs to a negative
exponential function using orthogonal distance regression [47] to obtain PSD slopes and intercepts.

The PIP provides both PSDs and size-resolved fall speeds, reflectivities are from the MRR,
and precipitation rates are from the combined Pluvio and snow stake field observations as described
in Section 2.1. As in Wood et al. [13,30], the size-resolved falls speeds are composed into mean
fall speeds over three size ranges, which for this work were set to De values of 2.75 ± 0.25 mm,
1.5 ± 0.125 mm, and 0.75 ± 0.125 mm. These ranges are intended to provide information about how
fall speed varies with size without overemphasizing the importance of the fall speed information
in the retrieval. If no fall speeds are observed in one or more of the size ranges, the retrieval is not
performed for that time step. For this work, 1261 retrievals out of 4632 samples were not performed,
leaving 3371 samples for retrieval. This was most frequently due to observing no particles in the largest
size range. Radar reflectivities are taken from the fourth range bin above the surface, approximately
120 m above the surface, to avoid contamination by ground clutter. As in Wood et al. [13,30], observed,
not fitted, PSDs are used for the retrieval.

Uncertainties in observed PSD, observed and forward-modeled fall speed, and observed and
forward-modeled precipitation rate follow Wood et al. [7,13,30]. For reflectivity at the MRR frequency,
the combined model-measurement uncertainties involve not only measurement errors, but also model
errors due primarily to unknown particle shape. These uncertainties were modeled assuming a constant
1 dB measurement uncertainty and a reflectivity-varying model uncertainty based on an analysis
of a higher-frequency (W-band) radar [48], which would exhibit somewhat more shape sensitivity
compared to the MRR. During light snowfall (high SLR) conditions, the variances for the reflectivity
model-measurement were inflated by a factor of 2 to account for the vertical separation between the
observations. During heavy snow (low SLR), a factor of 40 was used so that the measurements from
the Pluvio were emphasized by the retrieval.

The nature of the retrieval requires reasonable physical consistency among the observations. If not,
the retrieval may fail to converge or converge to unphysical results. For these observations, the principal
concern is the relatively weak sensitivity of the Pluvio to lighter snowfall compared to the PIP and
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snow field observations. The most common manifestation of this inconsistency involved samples
for which the PIP detected nontrivial concentrations of snow particles and the radar reflectivity was
consistent with precipitation, but the Pluvio detected no accumulation during the sample. The MRR
reflectivity was often substantial for these samples, with a mean value of 8.2 dBZ (figure not shown).
For such samples, the retrieval typically gave results that produced a small snowfall accumulation well
below the 0.1 mm detection limit of the Pluvio. Though some of these samples may represent valid
retrievals during very light snowfall, a conservative filter was applied to the output that removed any
samples in which the Pluvio reported no accumulation. The Pluvio failed to detect precipitation in
2062 samples out of the 3371 samples for retrieval, with most of the failures (1561) occurring during
the high SLR events.

2.3. Snow Event Selection

In selecting the snow events to use in this work, we purposely set thresholds to limit uncertainties
originating from environmental conditions. Accurate comparisons of bulk snow characteristics, such as
LWE precipitation rate, mass, and density, can be impeded by environmental factors, such as moderate
to high wind speeds and surface temperatures nearing the melting point. We therefore set limits of
surface temperatures <0 ◦C (slightly more conservative than the <2 ◦C limit that were used in previous
studies of snowfall at the site [19]) and wind speeds <5 m s−1 for the event duration. Additionally,
we selected snow events that had continuous snowfall for at least six hours, so that we could compare
the outputs to at least one snow field accumulation measurement. Finally, we partitioned the events
into low versus high SLR snow categories by using the 6-hourly NWS MQT SLR observations. By using
the NWS observed SLR values to categorize the snow events, we partition only on differences in the
density of snow on the ground and not by information about the particle densities, in which number
density, size, and riming will all have impacts [49]. The low SLR snow events are those where the
SLR is 15:1 or less, and the high SLR snow events are where the SLR is greater than 15:1. Using these
criteria, we acquired 11 low and 8 high SLR snow events from the NWS MQT site between January
2017 and April 2019.

3. Results and Discussion

3.1. Low and High SLR Snow Event Characteristics

The low SLR snow events are shown in Table 1. These snow events have mean SLR values ranging
from approximately 7.5:1 (extremely wet, dense snow) to 15:1 (commonly specified relationship for
synoptically forced snowfall [50,51]). The mean PIP-derived snow rates vary widely from 0.095 to
3.75 mm h−1. The observed event mean surface temperatures also have a large spread, ranging from
−17 to −0.5 ◦C. There is a tendency for the warmer low SLR events (those with mean temperatures
closer to 0 ◦C) to have higher mean snow rates. Generally speaking, the majority of these low SLR
snow events are produced by synoptically forced, deep precipitation (figures not shown). However,
two of the low SLR events would be categorized as shallow LeS: 4 January through 6 January 2018
and 20 January through 21 January 2019. Both of these low SLR LeS events have extremely cold
temperatures (event means of −17 ◦C), which likely indicates that boundary layer temperatures were
colder than the dendritic growth zone (DGZ) and would not be an environment conducive to large
particle growth [52]. This is consistent with the characteristics of a secondary mode of LeS snow
identified at MQT in previous work [19,20].

Characteristics of the high SLR snow events are shown in Table 2. The high SLR snow events
have mean SLRs from 28:1 (lower density snowfall) to greater than 50:1 (very low density), which are
consistent with SLRs seen in previous studies of LeS [20,53,54]. Originally, we identified two additional
ultralow density snow cases (SLR > 80:1); however, the Pluvio did not record any data during these
events, which makes it difficult for the von Lerber and Wood methods to accurately retrieve mass.
The mean PIP-derived snow rates are much lower than the low SLR events and a narrower range of
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values, from 0.079 to 0.511 mm h−1. The event mean surface temperatures ranged from −10 to −5 ◦C,
again a much smaller distribution than that of the low SLR snow events. All of the high SLR events
were a product of surface and air interactions, namely LeS, orographic forcing, or both, as supported
by the precipitation radar profiles (figures not shown).

Table 1. This is a table of the 11 low SLR snow events used in this work. Listed are the start and
end times used for the analyses, as well as mean values of snow-to-liquid ratio (SLR), snow rate
(here abbreviated as SR), wind speed (here abbreviated as WS), and temperature for the duration of
each event.

Start
(Date/Time)

End
(Date/Time)

Mean SLR
NWS

Mean SR
PIP (mm h−1)

Mean WS
(m s−1)

Mean
Temp (◦C)

11 November 2017
0600 UTC

11 November 2017
1200 UTC 12.14 0.899 3.33 −5.25

11 December 2017
1300 UTC

11 December 2017
1900 UTC 15 0.095 3.28 −8.95

13 December 2017
1000 UTC

13 December 2017
1800 UTC 13 0.278 1.55 −11.49

4 January 2018
0000 UTC

6 January 2018
1600 UTC 15.03 0.137 3.42 −17.16

22 January 2018
1800 UTC

23 January 2018
0300 UTC 7.5 3.751 3.96 −3.53

3 February 2018
1800 UTC

4 February 2018
0400 UTC 12 0.316 1.83 −12.88

12 April 2018
0800 UTC

12 April 2018
1600 UTC 10.45 1.672 0.88 −0.46

15 April 2018
1000 UTC

15 April 2018
2300 UTC 7.34 3.134 6.00 −6.41

2 December 2018
0600 UTC

3 December 2018
0300 UTC 9.11 2.455 4.73 −1.74

7 January 2019
0700 UTC

7 January 2019
2300 UTC 12.65 1.035 3.47 −2.22

20 January 2019
0600 UTC

21 January 2019
0600 UTC 14.89 0.274 2.87 −16.89

Table 2. This is a table of the eight high SLR snow events used in this work. Organization follows that
of Table 1.

Start
(Date/Time)

End
(Date/Time)

Mean SLR
NWS

Mean SR
PIP (mm h−1)

Mean WS
(m s−1)

Mean
Temp (◦C)

14 December 2017
0000 UTC

14 December 2017
0800 UTC 32.75 0.259 2.59 −10.21

15 January 2018
2200 UTC

16 January 2018
2000 UTC 36.39 0.351 1.00 −9.76

28 January 2018
0800 UTC

28 January 2018
2300 UTC 70 0.054 2.48 −8.86

6 March 2018
1800 UTC

7 March 2018
2300 UTC 27.58 0.511 3.24 −7.26

13 March 2018
0400 UTC

7 March 2018
2300 UTC 30.33 0.132 3.94 −7.78

17 November 2018
0000 UTC

17 November 2018
2100 UTC 29.62 0.148 3.14 −6.04

25 November 2018
1200 UTC

26 November 2018
2000 UTC 30 0.079 3.49 −5.43

10 January 2019
0000 UTC

10 January 2019
2300 UTC 59 0.053 3.39 −10.50
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3.2. Snow Microphysical Characteristics

The PIP produces end-user products such as PSDs and size-resolved particle fall speeds,
which illustrate microphysical characteristics of the snow. Figure 2 shows the PIP-derived PSDs for the
low and high SLR events presented as two-dimensional histograms (Figure 2a,c, respectively). The low
SLR snow events have large particle concentrations (>103 m−3 mm−1) at small De (<1 mm), while the
high SLR snow events demonstrate a broader range of PSDs with an order of magnitude fewer small
particles (most values <103 m−3 mm−1). These PSD results are consistent with prior studies of snowfall
regimes [19]. The composite fall speed distributions also indicate differences between the low and
high SLR events (Figure 2b,d, respectively). The low SLR snow composite implies generally higher fall
speeds as a function of De compared to the high SLR snow composite, which has a flatter relationship
and smaller particle fall speeds (<1 m s−1). The mean fall speeds for the low SLR snow events are
30–45% larger than those for the high SLR snow events as a function of De for those De values <5 mm.
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Figure 2. Composite two-dimensional histograms of Precipitation Imaging Package (PIP) observations
of PSD as a function of mean diameter of the particles for the low and high SLR snow events
((a,c), respectively), and composite two-dimensional histograms of PIP observations of fall speed as a
function of mean diameter of the particles for the low and high SLR snow events ((b,d), respectively).
Note: the discretization of the PIP measured values of PSD and mean diameter is due to the finite
measurement volume of the PIP.

We also can examine the microphysical characteristics of the low and high SLR cases through
differences between the shape of the size distributions for each category. Previous studies have applied
the following inverse exponential relation to measured snow particle concentrations:

N(De) = N0 exp(−Λ De) (9)

where N(De) is the particle concentration per particle size, De. N0 and Λ are the PSD intercept and the
slope parameter, respectively [19,55–58]. Both the von Lerber and Wood retrieval methods applied the
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relation in Equation (9) to 5 min intervals of the PIP data and each obtained N0 and Λ for the low and
high SLR events. There are differences in the resulting N0 and Λ derived by the von Lerber and Wood
methods due to differences in fitting methods and preprocessing of the PIP PSD data (see Sections 2.2.2
and 2.2.3 for details).

Figure 3 illustrates composites of the derived von Lerber and Wood N0 and Λ for the low SLR
events (Figure 3a,b, respectively) and the high SLR events (Figure 3c,d, respectively). In general,
the low SLR composites from the two methods show similar ranges, with N0 ranging from 102 to 105

m−3 mm−1 and Λ values of 0.5 to 6.5 mm−1 in a seemingly linear structure (see Figure 3a,b). The von
Lerber shows fewer small values of both N0 and Λ, which could be due to preprocessing that applies
the threshold for total concentration and removes single occurring particle counts prior to the fitting
routine (see Section 2.2.2). In both the von Lerber and Wood outputs, the high SLR events N0 and Λ
values are much smaller than that for the low SLR events, with N0 ranging from 10 to 104 m−3 mm−1

and Λ ranging from 0.4 to 1.6 mm−1, and no apparent relationship between the intercept and slope
parameter. These results clearly show there are different shapes to the PSDs as a function of events
that are low versus high SLR, which align with the results illustrated in Figure 2a,c. The median von
Lerber values of both N0 and Λ are 66% smaller for the high versus the low SLR snow events, while the
median Wood value of N0 is 58% smaller and Λ is 49% smaller for the high versus low SLR snow events.
The N0 and Λ results from the low SLR composite imply that these snowfall events have narrow PSDs
with large amounts of small particles, similar to what has been observed for previous synoptically
forced snow [19,55,58–60]. While the high SLR composite indicates the opposite: that these snow
events tend to have broad PSDs with an order of magnitude fewer small particles and a tendency
towards containing more large particles. The N0 and Λ are similar to values seen in previous studies
of LeS [19,56,61].
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Figure 3. The N0 and Λ relationships as calculated for the low SLR snow events are shown in (a)
(von Lerber) and (b) (Wood). The N0 and Λ relationships as calculated for the high SLR snow events
are shown in (c) (von Lerber) and (d) (Wood). Note that both variables are shown as log10 scaled.
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Additionally, we examined and compared the retrieved values of mass-weighted mean diameter
for each SLR snow regime and the von Lerber and Wood methodologies. Mass-weighted mean
diameter (Dm) is:

Dm =

∫ Dmax

Dmin
m(De)N(De)DedD∫ Dmax

Dmin
m(De)N(De)dD

(10)

There is good agreement (correlation coefficients (cc) of 0.945 and 0.883) between the von Lerber
and Wood-derived values for Dm (see Figure 4). The high SLR event composite of Dm indicates
a larger spread between the von Lerber and Wood values versus the low SLR, with the Wood Dm

values generally higher for both categories (biases of +13.7% and +10.1%, respectively). In the low
SLR event composite, both methods indicate that the majority of Dm values are smaller than 2 mm.
However, in the case of the high SLR events, the range of values of Dm is much larger, extending
from 1 to 4 mm, with a concentration towards larger values of Dm mostly between 1.5 and 3 mm.
The median von Lerber value of Dm is 51% larger and the median Wood value of Dm is 56% larger
for the high versus the low SLR snow events. The GPM Dual Precipitation Radar (DPR) algorithm
has prescribed relationships for precipitation and Dm for stratiform and convective rainfall [21,62],
and it is important to also examine these relationships for snowfall. Figure 4 illustrates that there are
clear Dm differences for the low versus high SLR snowfall events. The SLR event types occur under
different environmental conditions that should be therefore an additional factor that is considered
when examining precipitation and Dm relations.
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Figure 4. Shown are comparisons of calculated mass-weighted diameter (Dm) from the von Lerber and
Wood retrievals for the low SLR (a) and high SLR (b) snow events. The von Lerber Dm is plotted on the
x-axes and the Wood Dm on the y-axes. The black dashed line represents a 1:1 relationship, while the
blue dotted line is the linear regression fit to the data.

In addition, we investigated the output of the mass parameters, α and β, described in Equation (2),
from the von Lerber retrieval (Figure 5a,c) and the Wood retrieval (Figure 5b,d). Note that the Wood
retrieval outputs are fewer due to Pluvio limitations and filtering detailed in Section 2.2.3. (especially
true for the high SLR cases). The low SLR events have scaling factor values, α, slightly larger than 10−4

and exponent, β, between 2 and 2.5 as produced by the von Lerber retrieval, while the Wood retrieval
has a lower range of α (between 10−4.25 and 10−4) and similar β (2–2.5). The von Lerber high SLR event
composite shows much lower values for α (between 10−4.75 and 10−4) and β (between 1.75 and 2.25).
Though there are few points, the Wood retrieval also indicates lower α values, whereas the β range is
similar to the low SLR output. Similar to the N0 and Λ comparisons, we see that the low and high SLR
snow event composite relations for α and β exhibit a clear separation, as illustrated in the von Lerber
retrievals (Figure 5a,c). The values of both α and β are larger for the snow particles observed by the
PIP during the low SLR events, which indicates that the mass increases faster as the area-equivalent
diameter of the particle increases compared to the high SLR particles. The median of the von Lerber α
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values for the low SLR snow events is twice that of the high SLR, while the medians of the von Lerber
β values are approximately the same for the low and high SLR (difference of 6%). The differences seen
between the low versus high SLR events imply that snowfall retrieval algorithms, which rely on a
priori assumptions of α and β either explicitly [48] or implicitly (e.g., Kulie and Bennartz [63], Liu [4],
and Table 1, Braham et al. [64]), might benefit by adjusting to variations in snow type.
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Wood-retrieved output due to the filtering of times when the Pluvio does not report any accumulation.

Finally, we compare the ice water content (IWC) retrieved by both the von Lerber and the Wood
methods, for the low and high SLR snow events (see Figure 6a,b, respectively). Figure 6a evaluates
the respective retrieved IWC values for the low SLR events. Though the IWC retrieved values are
correlated (cc of 0.864) for the low SLR snow events, the Wood retrieval calculates much smaller IWC
values versus the von Lerber retrieval, with a bias of –50%, and spread of 0.08 g m−3 as determined
by the Root Mean Square Error (RMSE). In general, low SLR snow events produce more IWC values
below 0.6 g m−3 for the von Lerber and 0.4 g m−3 for the Wood retrievals, respectively. The high SLR
event composite has far fewer values to compare and there is a wide spread in the retrieval comparison
and reduced correlation (cc of 0.539). There is an indication that the Wood output retrieves larger
values of IWC matched to that of the von Lerber output; however, with so few points we can only
suggest this is a possibility. There is evidence that the low SLR events produce more integrated mass
as the median von-Lerber-retrieved value of IWC is more than an order of magnitude larger for the
low SLR versus the high SLR snow events.

In general, the low SLR snow events have an order of magnitude more small particles and 30
to 45% higher fall speeds than the high SLR snow events. Both the von Lerber and Wood-derived
values of N0 and Λ are smaller (66% and ~50%, respectively) for the high versus low SLR snow events,
which is consistent with findings from Pettersen et al. [19]. The Dm values for the high SLR snow



Atmosphere 2020, 11, 785 15 of 26

events are larger for von Lerber (51%) and Wood (56%) versus the low SLR events. The median
von-Lerber-retrieved value of α was two times larger for the low SLR versus the high SLR snow events,
while the β values were approximately the same. The von-Lerber-retrieved IWC was more than an
order of magnitude larger for the low versus the high SLR snow events. In terms of comparisons
between the retrievals, the Wood Dm values were between 10% and 14% larger than the von Lerber
Dm values, regardless of snow event type, and the Dm values for the retrievals were highly correlated
(cc values of 0.88 and 0.95). The Wood-retrieved values of IWC were biased 50% lower than the von
Lerber IWC values for the low SLR snow events; however, the retrieved values were highly correlated
between the retrieval methods (cc of 0.86).Atmosphere 2020, 11, x FOR PEER REVIEW 16 of 28 
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Figure 6. Shown are comparisons of five-minute values of IWC from the von Lerber and Wood retrievals
for the low SLR (a) and high SLR (b) snow events. The von Lerber IWC is on the x-axes and the Wood
IWC on the y-axes. There are fewer points in the Wood-retrieved output due to the filtering of times
when the Pluvio does not report any accumulation, resulting in fewer comparisons of retrieved mass
overall, but particularly in the high SLR events. The black dashed line represents a 1:1 relationship,
while the blue dotted line is the linear regression fit to the data.

3.3. Bulk Snowfall Characteristics

We have shown that using snow observations from the PIP the von Lerber and Wood-retrieved
microphysical characteristics compared well and showed consistent differences between the low
and high SLR events. Additionally, the values of α, β, and mass were physically reasonable and
again illustrated distinct relationships for the low and high SLR snow events. Here, we examine
and intercompare the bulk characteristics of the low and high SLR snow events from the PIP
higher-order-derived data products and the von Lerber and Wood retrievals. The intercomparison
focuses on the produced values of snow rate and ρe.

Figure 7 highlights comparisons of the PIP-produced LWE precipitation rates (on the y-axes) with
those from the von Lerber (Figure 7a,c) and Wood (Figure 7b,d) methods for the low (Figure 7a,b) and
high (Figure 7c,d) SLR snow events. For the low SLR event composites, we see LWE precipitation
rates up to 6 mm h−1 with a very high correlation between the PIP-derived snow rates and the output
from von Lerber (cc of 0.976), while less correlated with the snow rates retrieved from Wood (cc of
0.786). In general, the LWE precipitation rates are less than 2 mm h−1, but there are indications of
repeated instances of higher rate values. The PIP LWE precipitation rates tend to be in good agreement
with those of von Lerber, a bias of +1.56%, but biased high with respect to Wood (+7.41%) for the low
SLR snow events. For high SLR snow events, the PIP and von Lerber retrievals compare well (cc of
0.940), with a linear relationship as LWE precipitation rates increase. There is again good agreement
between the produced snow rates, with the PIP is biased slightly high (+3.1%) compared to the von
Lerber values. Many of the high SLR snow event samples provided physically inconsistent inputs
for the Wood method and were so excluded (see Section 2.2.3), so it is difficult to compare. However,
we can compare the differences between the low and high SLR snow events by examining the PIP
and von Lerber produced values of snow rate. Though the RMSE between the PIP and von Lerber
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values of snow rate is 0.115 mm h−1 for the low SLR and 0.242 mm h−1 for the high SLR snow events,
the median values for the event regimes agree very well, with a 4% difference for the low SLR and a 9%
difference for the high SLR snow events. Unsurprisingly, the low SLR snow events have much larger
LWE precipitation rates, with median rates more than 20 times higher compared to the high SLR snow
events for both the PIP and von Lerber outputs.
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Figure 7. Shown are comparisons of the respective retrievals of snow rate (note: shown in log10).
The PIP-derived snow rate product is plotted along the y-axes in each panel, where the von Lerber and
Wood-retrieved snow rates are plotted along the x-axes ((a,c) and (b,d), respectively). (a,b) illustrate
the results from the low SLR snow events and (c,d) illustrate the results from the high SLR snow events.
The black dashed line represents a 1:1 relationship, while the blue dotted line is the linear regression fit
to the data.

We also assess the respective values of ρe (g cm−3) for the low and high SLR snow events
(see Figure 8). As discussed in Section 2.2.1, the SLR output from the three methods is roughly the
inverse of the ratio ρe to the density of water (1 g cm−3); however, it is important to note that this
conversion does not account for compaction effects. Here, we compare the ρe values by inverting them
to produce bulk SLR values for each time step. The low and high SLR events were defined using SLR
observations from the NWS MQT snow field, and therefore we expect the comparisons in Figure 8 to
have different ranges of PIP, von Lerber, and Wood produced SLRs as a function of event category,
regardless of method. We see for the low SLR snow event composites (Figure 8a,b) that the vast
majority of SLR values are less than 10:1 for the PIP, von Lerber, and Wood retrievals. The SLR output
from the PIP and the von Lerber retrievals have a correlation of 0.756. There is a shift for SLR of >15
where von Lerber reports larger values compared to the PIP, which results in the PIP values biased 30%
lower than output from von Lerber. However, the median values of the PIP and von-Lerber-derived
SLR are within 6%. The low SLR composite for the PIP and Wood-derived SLR have a low correlation
(cc of 0.382), and an inclination for the PIP SLR to be much lower than that of the Wood output (bias of
–79.6%). The high SLR event composite between the PIP and von Lerber SLRs (Figure 8c) show a
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similar correlation to the low SLR composite (cc of 0.804); however, with more variability (RMSE of
4.843), and a low bias of almost 50%. Additionally, the median PIP-produced SLR value is 60% smaller
than that of von Lerber for the high SLR snow events. There are too few values of the Wood method
for the high SLR snow events to conclude similarities or differences with the PIP output (Figure 8d).
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Figure 8. Shown are comparisons of the respective ρe inverted into SLR. The PIP-derived SLRs are
plotted along the y-axes in each panel, whereas the von Lerber and Wood-retrieved SLRs are plotted
along the x-axes ((a,c) and (b,d), respectively). (a,b) illustrate the results from the low SLR snow events
and (c,d) illustrate the results from the high SLR snow events. The black dashed line represents a 1:1
relationship, while the blue dotted line is the linear regression fit to the data.

The PIP and von Lerber low (Figure 8a) and high (Figure 8c) SLR event composites illustrate that
the majority of the prescribed low SLR snow event values are <10:1, whereas the high SLR snow event
SLRs range from 8:1 to 30:1, with some of the von Lerber values extending to 60:1 (note different x and
y limits). Additionally, the median PIP value for the high SLR snow events is twice that of the low SLR
snow events, while the corresponding von Lerber median values are 3.6 times larger. The range of
SLRs values for the high SLR snow events is much larger than that of the low SLR snow events.

Though much of the focus of this work is an intercomparison of the bulk snow products from
the PIP higher-order products and the von Lerber and Wood retrievals, we additionally wanted to
assess each method against an established means of acquiring accumulation to produce uncertainty
estimates. Here, we examine the six-hourly accumulation and SLR values from NWS MQT snow field
measurements for all the presented snow events against corresponding intervals of accumulation.
These accumulation comparisons are presented in Figure 9 with the NWS MQT snow accumulation
observations on the respective x-axes (left panels). There is a high correlation between the six-hourly
accumulations from the respective methods and the snow field observations, with PIP cc of 0.971,
von Lerber cc of 0.982, and Wood cc of 0.986. The PIP-produced and von-Lerber-retrieved accumulations
show excellent agreement with the snow field observations, where each is biased slightly high at
+2.48% and +7.22%, respectively, the Wood-retrieved accumulations also agree very well; however,
are biased slightly lower than the snow field at −9.45%. The accumulations for all three methods
RMSE range from 0.11 to 0.13 mm per 6 h interval. The PIP (Figure 9a) and von-Lerber-derived
(Figure 9c) accumulation comparisons have 46 and 44 6 h interval matches, respectively, while the
Wood accumulation only had 22 6 h accumulation comparison points due to the Pluvio filtering method
(see Section 2.2.3).
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snow events, while simultaneously showing that the PIP higher-order-derived products accurately 
represent the bulk snow conditions. We additionally want to emphasize the utility of these methods 
to examine the snow characteristics as a function of individual events. In this subsection, we present 
a snow event that transitions from low to high SLR snowfall under changing environmental 
conditions. Detailed examples of low and high SLR events can be found in Appendix B (Figure A1 
and A2, respectively). The event is presented with ancillary data from the profiling radar (MRR), the 
Pluvio, and snow field accumulations, the surface meteorological conditions, and the output from 

Figure 9. Displayed are comparisons of the 6-hourly accumulations from the PIP, von Lerber, and Wood
output to corresponding times from the National Weather Service (NWS) Marquette, Michigan (MQT)
snow field observations (x-axes). (a) shows the PIP accumulations (46 6 h periods), (c) shows the
von Lerber accumulations (44 6 h periods), and (e) shows the Wood accumulations (22 6 h periods).
Shown also are the 6-hourly NWS MQT calculations of SLR (x-axes) matched to the median values for
the same time periods for the three retrievals (right panels). (b) shows the PIP median SLR, (d) shows
the von Lerber median SLR, and (f) shows the Wood median SLR. The black dashed line represents a
1:1 relationship. Low SLR samples are in magenta, high SLR samples are in blue, and transition events
are in green.

Additionally, we compare the six-hourly observations of SLR from the NWS MQT snow field
(x-axes in Figure 9b,d,f) and the median SLR produced by each method. The PIP, von Lerber, and Wood
median SLR tended to be lower than that measured by the snow field with biases of −68.2%, −56.4%,
and −41.7%, respectively; however, all are well correlated (cc of 0.831, 0.874, and 0.843, respectively).
The high SLR snow event median SLRs (purple circles) tend to have much more spread, which is
unsurprising given the large variability in LeS and orographic snow events. There is less agreement
between the snow field and the Wood SLR values; however, there are also fewer points (22) to compare.
In general, the Wood median SLRs for the low SLR events agree better with the snow field than the
retrieved values for the high SLR events. Additionally, the Wood median SLRs for the same time
periods as the PIP and von Lerber median SLRs correspond well for the low SLR event samples;
however, they do not for the high SLR events (figure not shown).

The results imply fundamental differences in the bulk snow characteristics between the low and
high SLR snow regimes. The low SLR snow events produced much larger LWE snow rates, as both
the PIP and von Lerber indicated 20 times higher values compared to the high SLR snow events.
The differences in snow rates seen between the low SLR (primarily synoptically forced snow events)
and high SLR (LeS and orographically forced snow events) are consistent with differences observed
in previous studies [19,20,37]. Unsurprisingly, the PIP and von Lerber determined median values of
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SLR were 2 and 3.6 times larger, respectively, for the high versus the low SLR snow events. The high
SLR snow events tended to have a much larger spread of values of PIP and von Lerber determined
SLR, which could be due to the large variability inherent in surface-based processes by different
forcing mechanisms (LeS versus orographic) and boundary-layer conditions [19,20]. In terms of
intercomparisons of snow rates, there was excellent agreement between the three methods for the low
SLR snow events, with the PIP values biased +1.58% compared to the von Lerber retrieval and +7.41%
compared to the Wood retrieval. For the high SLR snow events, there was again excellent agreement
with the PIP values biased +3.1% compared to the von-Lerber-retrieved values. When compared to
the NWS snow field measurements of six-hourly accumulation, the retrievals all showed consistent
results: The PIP accumulations were only biased +2.48% higher with an RMSE of 0.13 mm per 6 h time
interval; the von Lerber retrievals of accumulation had a high bias of +7.22% and RMSE of 0.11 mm;
and the Wood retrievals were biased −9.45% lower than the snow field accumulation with an RMSE of
0.13 mm per 6 h period. It is important to note that the PIP-produced accumulations agreed best with
the NWS snow field and, unlike the Wood and von Lerber retrievals, do not use any information from
the snow field to calculate the event accumulations. Although the scatter shown in Figure 7 suggests
the fractional uncertainties in high-time resolution snow rates have larger spread (especially when
compared to the Wood retrievals), Figure 9 indicates that 6 h PIP estimates of accumulation or mean
snowfall rate appear to have uncertainties smaller than 5%.

3.4. Detailed Example of a Snow Transition Event

Throughout this analysis, we have presented the output from the PIP, von Lerber, and Wood
methods using a composited approach that highlights the differences between the low and high SLR
snow events, while simultaneously showing that the PIP higher-order-derived products accurately
represent the bulk snow conditions. We additionally want to emphasize the utility of these methods to
examine the snow characteristics as a function of individual events. In this subsection, we present a
snow event that transitions from low to high SLR snowfall under changing environmental conditions.
Detailed examples of low and high SLR events can be found in Appendix B (Figures A1 and A2,
respectively). The event is presented with ancillary data from the profiling radar (MRR), the Pluvio,
and snow field accumulations, the surface meteorological conditions, and the output from the von
Lerber and Wood retrievals to give further context and support to the PIP-derived data products.

We examine an event that started as synoptically forced snow and transitioned to lake-enhanced
snowfall [20,65] from 19 November (0400 UTC) to 20 November 2018 (0200 UTC), shown in Figure 10.
During the beginning of the event (prior to 1300 UTC), the MRR profile indicates a deep precipitation
column of light snowfall (reflectivities <10 dBZ; Figure 10a) and comparatively slow fall speeds
(<1 m s−1; Figure 10b). We also see that the PIP PSDs are very narrow during this time period with
particles smaller than 5 mm De (Figure 10c). Additionally, the PIP ρe distribution values are greater than
0.1 g cm3 (10:1 SLR) during the early part of the snow event (Figure 10d). At 1300 UTC, we see an abrupt
change in the observations with increasing reflectivity and Doppler velocity values with decreasing
precipitation height (~1.5 km AGL). At this same time, the PIP PSDs respond with an immediate
broadening (particles ranging up to 15 mm De), while still maintaining a high concentration of small
particles (>104 particles smaller than 1 mm De). We also see that the ρe distribution shifts to lower
values, generally less than 0.1 g cm−3 (Figure 10d). The accumulation (Figure 10e) is gradual during
the low SLR period of the snow event, but the snow rate increases directly following the transition at
1300 UTC, with ~9 mm accumulation in 6 h (in agreement with the von Lerber accumulation). Overall,
the von Lerber total accumulation exactly matched the NWS MQT snow field, while the PIP recorded a
relatively higher amount (120%) and the Wood retrieval much less (67%). Unsurprisingly, we see an
instantaneous response from the values of SLR and Dm at 1300 UTC as well (Figure 10f,g, respectively),
and both increase rapidly, with SLR values from 10:1 to greater than 20:1 and average Dm growing
from ~0.5 to more than 2 mm. During the transition period, winds shift to slightly higher speeds
(Figure 10h) and more northerly direction.
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Figure 10. Example of a snow event that transitions from low to high SLR snowfall from 19 to 20
November 2018. (a) Shown is data from the MRR reflectivity, (b) MRR Doppler velocity, (c) PIP-produced
PSDs, (d) PIP-derived ρe distribution as a function of De, liquid water equivalent (LWE) accumulation
for all three retrievals, (e) the Pluvio, and the NWS 6-hourly snow field, (f) calculated SLR from all
three retrievals and the NWS 6-hourly snow field observations, (g) the mass-weighted diameter (Dm)
from von Lerber and Wood, (h) and the surface meteorological conditions. All variables are presented
as a function of time from 19 November at 0400 UTC to 20 November at 0200 UTC. The transition from
low to high SLR occurs at approximately 1300 UTC.

4. Conclusions

The primary goal of this work was to define and demonstrate the quality and efficacy of the
PIP higher-order products. The results detailed in this work confirm the ability of the PIP-derived
products to quantify properties of LWE snow rate, ρe, and SLR. Specifically, through comparisons with
established mass retrieval methods from von Lerber et al. [17] and Wood et al. [30], we have shown
that the PIP produces physically consistent bulk snow characteristics and produces LWE snow rates
that agree with these methods within 1.5 to 12% depending on snow type and retrieval. Additionally,
the PIP-derived LWE accumulations over 6 h periods match the NWS MQT snow field measurements
for both the low and high SLR events, suggesting that the PIP LWE snow rates are accurate for the
examined snowfall. The PIP accumulations were within 2.48% of those for the NWS snow field
observations and, unlike the von Lerber and Wood retrievals which made use of the snow stake
field observations directly or indirectly, were produced with no ancillary information of precipitation
rate or accumulation. The von Lerber and Wood-derived six-hourly accumulations also showed
consistent results with the NWS MQT snow field measurements, agreeing within 10%. Furthermore,
the results from this work indicate that the PIP is much better at detecting small accumulations of snow
compared to the unfenced Pluvio gauge. The large number of samples for which the Pluvio detected
no accumulations and the PIP (and MRR) indicated significant snowfall, particularly prevalent for the
high SLR events, underscores this point. These results imply that the PIP is less impacted by wind and
therefore has less or no undercatch. This may be due to the advantage that the PIP is able to sample
in a large and unimpeded volume, where the Pluvio has only a small opening for which to receive
falling particles. The PIP is therefore well suited to providing time series of snowfall rates and SLR at a
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high-time resolution, as is exhibited in the detailed analysis of specific snow events (see Figure 10,
Figure A1, and Figure A2).

We also found that there are distinct microphysical and bulk characteristics for the low and high
SLR snow events, as illustrated by the three retrieval methods. The PIP-produced PSDs, fall speeds,
and relationships of N0 and Λ were very different for the low versus high SLR and consistent with
values found in previous studies of synoptically forced and lake-effect snowfall. In general, the Dm

values for the high SLR snow events are larger and more variable than those for the low SLR snow
events. Similar to the N0 and Λ comparisons, we see that the low and high SLR snow event composite
relations for α and β exhibit a clear separation, with lower values of both for the high SLR snow
events. There were too few IWC values for the high SLR snow events to compare the von Lerber and
Wood methods, but low SLR IWC values are generally larger. In general, the PIP LWE snow rates
compared well to those produced by the retrieval methods for the high and low (von Lerber only)
density events. The PIP and von-Lerber-retrieved values of SLR were consistent for both low and
high SLR snow events, with the von Lerber method producing consistently larger values. Finally,
accumulation comparisons between all three methods and the six-hourly snow field were excellent for
both the low and high SLR snow events.

Future work will focus on a few key areas. First, to develop a means to produce real-time
uncertainty estimates for the PIP LWE snow rate and ρe products. Second, to enhance the current PIP ρe

parameterization. As outlined in Section 2.2.1, the PIP ρe parameterization is currently constrained and
tested by empirical observations from only three events with a limited range of SLRs. Further analysis
of extreme high SLR, higher density (<10:1), and mixed-phase snow events, as well as those containing a
majority of graupel and rimed particles will help to improve the ρe parameterization. Third, continue to
expand our understanding of the meteorological and environmental factors on the retrieved snow
micro- and macrophysical characteristics. This work indicates that there are specific microphysical
relations and bulk characteristics that are connected to the ambient environment, and further analysis
could illuminate key snow processes.

The PIP has been used in several field campaigns and long-term deployments all over the
world, and these data are available for continued examination of snow. The PIP observations and
higher-order products serve as valuable constraints on microphysical assumptions in ground-based and
spaceborne remotely sensed snowfall retrievals. Additionally, this work illustrates that the higher-order
PIP-derived LWE snow rate and ρe values are physically consistent and valid when compared to
several retrieval methods and measurements. Furthermore, the PIP captures accumulation during
snow conditions under which traditional precipitation gauges are unable, due to the unique open
volume design. The PIP data and higher-order products are an invaluable resource to the snow and
precipitation communities.

5. Data Availability
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Appendix A

Table A1. This table described the parameters for the PIP-derived data products in Section 2.2.1.

Parameter Symbol Parameter Description Units

De area-equivalent diameter mm
DVe volume-equivalent diameter mm
Dm mass-weighted mean diameter mm
ρe particle distribution equivalent density g cm−3

ρe bulk equivalent density g cm−3

ρsize size-averaged density g cm−3

ρliq water density g cm−3

ρmin minimum density boundary condition g cm−3

R liquid water equivalent precipitation rate mm h−1

m(De) mass distribution g
V(De) velocity distribution m s−1

Vmax(De) maximum fall speed for rain drop of De m s−1

Vref minimum fall speed boundary condition m s−1

N(De) size distribution m−3 mm−1
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Figure A1. Example of a low SLR snow event on 15 April 2018. (a) Shown is data from the MRR 
reflectivity, (b) MRR Doppler velocity, (c) PIP-produced PSDs, (d) PIP-derived ρ௘ distribution as a 
function of De, (e) LWE accumulation for all three retrievals, the Pluvio, and the NWS 6-hourly snow 
field, (f) calculated SLR from all three retrievals and the NWS 6-hourly snow field observations, (g) 
the mass-weighted diameter (Dm) from von Lerber and Wood, (h) and the surface meteorological 
conditions . All variables are presented as a function of time from 1000 UTC to 2300 UTC. 

Figure A1. Example of a low SLR snow event on 15 April 2018. (a) Shown is data from the MRR
reflectivity, (b) MRR Doppler velocity, (c) PIP-produced PSDs, (d) PIP-derived ρe distribution as a
function of De, (e) LWE accumulation for all three retrievals, the Pluvio, and the NWS 6-hourly snow
field, (f) calculated SLR from all three retrievals and the NWS 6-hourly snow field observations, (g) the
mass-weighted diameter (Dm) from von Lerber and Wood, (h) and the surface meteorological conditions.
All variables are presented as a function of time from 1000 UTC to 2300 UTC.
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